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ABSTRACT: Total syntheses of the marine polyketide metabolites
gracilioethers B and C have been realized in 9 steps (40% overall yield)
and 10 steps (34% overall yield), respectively. The [2(5H)-
furanylidene]ethanoate (furanylidene) motif was constructed in a
transacetalization/dehydration cascade of an advanced β-ketoester
intermediate, which was designed to mimic a postulated biosynthetic
precursor to the natural products. The relative and absolute
configurations of gracilioethers B and C are confirmed as (6R,8R)
and (6R,8R,11S), respectively.

The polyketide secondary metabolites gracilioethers A−K,
plakilactones A−H,1 and a number of related compounds2

were recently isolated from marine sponges of the genera
Plakortis, Plakinastrella and Agelas. A number of these have
shown significant antimalarial activity,1a,c moderate inhibition of
Leishmaniasis major,1a,2f pregnane-X-receptor (PXR) agonistic
activity,1d and antifungal properties.2g Gracilioethers B (1) and C
(2) (Figure 1) were also identified as agonists of peroxisome
proliferator-activated receptor γ (PPARγ).1b To date, few studies
have focused on developing methods for the synthetic
preparation of metabolites in this family.3

We recently proposed a plausible biosynthetic origin of
metabolites containing the [2(5H)-furanylidene]ethanoate
(furanylidene) motif by Kornblum−DeLaMare rearrangement,4

cyclization, and dehydration of related endoperoxides (Scheme
1) and demonstrated the utility of hydroxy β-ketoesters such as 3

in the synthesis of furanylidene scaffolds.3c Herein we report
application of this methodology to achieve total synthesis of
gracilioethers B (1) and C (2).
We reasoned that the relative and absolute configurations of

both gracilioethers B and C at C6 and C8 were most likely to be
(R,R). Our assumption was based, first, on the total synthesis and
stereochemical elucidation of a similar metabolite,3a ‘des-
hydroxygracilioether C,’ found unequivocally to have (6R,8R)
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Figure 1. Reported structures of gracilioethers B and C with (R,R)
configuration assumed at C6 and C8; and the oxygenated coisolates
gracilioether A, plakilactone B, and plakilactone C.

Scheme 1. Postulated Biosynthetic Origin of Furanylidene
Metabolites
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configuration and, second, the likelihood that gracilioethers B
and C share a common biosynthetic origin to the endoperoxide
coisolate gracilioether A, whose relative and absolute config-
uration was determined as (6R,8R) by chemical derivatization
and NMR analysis.1a Compound 1 was thus identified as the
structure most likely to be consistent with natural gracilioether B
and became the primary target of our strategy, since selective
reduction to the corresponding allyl alcohol 2 might be possible
by methods of asymmetric carbonyl hydrogenation developed by
Noyori.5

Disconnection of the unsaturated methyl ketone of 1, which
may be installed by Horner−Wadsworth−Emmons olefination,
unveiled aldehyde dimethyl acetal 4 as a key late stage
intermediate (Scheme 2). We envisaged that the furanylidene

ring system and correct oxidation state of 4might be reached in a
single cascade reaction of alcohol 5 (a synthetic analogue of 3) by
transacetalization to the putative intermediate 6 before
dehydration. Presumably this would occur via a number of
stabilized carbocation intermediates, which we have described
previously.3c Another advantage of our design was the potential
to access alcohol 5 directly from the aldol reaction of methyl 2-
oxohexanoate with aldehyde 7 that could be assembled in a
number of steps from olefin 8.
To begin, 8 was prepared in good yield and as a single

diastereomer by alkylation of the readily available oxazolidinone
9 with known allyl iodide 106 (Scheme 3). Capitalizing on
Brimble’s6 finding of reverse Sharpless-mnemonic dihydrox-
ylation of a substrate similar to 8, treatment with catalytic
K2OsO4·2H2O and (DHQ)2PHAL with K2CO3 and K3[Fe-
(CN)6] (purchased as commercially available AD-mix-α) in a 1:1
mixture of t-BuOH and H2O at −5 °C effected oxidation and
concomitant lactonization with good selectivity (9:1) for the
desired syn-lactone 11, which was inseparable from the minor
anti-diastereomer (with (S) configuration at C4).7 Reduction
with DIBAL was followed immediately by conversion of the
resulting lactol isomers to the configurationally stable methyl
acetal 12 (as a 3:1 mixture of acetal stereoisomers), and the
corresponding C4-epimer in a combined yield of 83%. Oxidation

with catalytic TPAP and NMO under standard conditions
developed by Ley8 cleanly afforded aldehyde 7, still as an
inseparable mixture. Despite attempts to remove the undesired
epimers produced in this sequence, separation of the C4-epimer
was not possible by column chromatography.
Aldehyde 7 was then added to a solution of the sodio-lithio

dianion of methyl 2-oxohexanoate, preformed by treating the
parent β-ketoester with NaH followed by n-BuLi.9 Gratifyingly,
the anticipated aldol reaction appeared to proceed smoothly on
warming from −78 °C to room temperature yielding a complex
isomeric mixture of alcohol 5. Rather than attempting to isolate
intermediates, the resulting mixture was simply treated with dry
HCl (generated in situ from acetyl chloride), MeOH, and excess
CH(OMe)3 at 20 °C overnight (15 h). Remarkably, NMR
analysis of this final material showed that the complex series of
spectral peaks observed on completion of the aldol reaction had
mostly resolved to a single set, which was identified as aldehyde
dimethyl acetal 4 and isolated in 74% yield as a single isomer after
flash chromatography. Consistent with our previous study of
furanylidene ring systems, we observed complete selectivity for Z
geometry of the exocyclic olefin.10

We were also pleased to find that the aldehyde dimethyl acetal
expected to arise from aldol reaction and transacetalization/
dehydration of the C4-epimer of 7 was not isolated. It appears
that reaction of the C4-epimeric aldehydes does not proceed
readily under our reaction conditions. This has allowed us to
streamline the middle section of our strategy by removing the
need to attempt chromatographic isolation of 7 and 12.
Furanylidene 4, a pivotal late stage intermediate in our strategy,
was thus prepared in 47% yield over seven preparative steps from

Scheme 2. Strategy for a Biomimetic Total Synthesis of
Gracilioether B

Scheme 3. Synthesis of Aldehyde 7, Aldol Condensation, and
Transacetalization/Dehydration to Furanylidene Aldehyde
Dimethyl Acetal 4
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9 and requiring only three applications of chromatographic
purification.
Transacetalization11 of 4 with catalytic In(OTf)3 and Me2CO

followed immediately by Horner−Wadsworth−Emmons olefi-
nation with diethyl (2-oxopropyl)phosphonate afforded 112

(Scheme 4). The 1H and 13C NMR data obtained were

consistent with that reported for natural gracilioether B,1a,12

and optical rotation confirmed that 1 had the same absolute
configuration. We were also pleased to find that reduction of the
pendant methyl ketone with catalytic RuCl2[(R)-Xylbinap][(R)-
Daipen] under H2 (4 atm), which has been shown to give
excellent selectivity for generating the corresponding (S)-allyl
alcohol,5 yielded 213 directly. Spectral analysis revealed over-
whelming similarity with that reported for natural gracilioether
C,1a,13 and once again, optical rotation measurements confirmed
the same absolute configuration. It was also possible to selectively
reduce 1 with the enantiomeric catalyst RuCl2[(S)-Xylbinap]-
[(S)-Daipen] under H2 (4 atm) yielding epi-214 and thus
demonstrating that asymmetric induction is under catalyst
control.15 The 1H and 13C NMR spectra of epi-2 in CD3OD,
although very similar to the spectra of 2, were inconsistent with
those of the natural material. Hence, the structures as well as
relative and absolute configurations of gracilioethers B and C are
confirmed as (6R,8R)-1 and (6R,8R,11S)-2, respectively.
In summary, total syntheses of gracilioethers B and C were

accomplished in 9 steps (40% overall yield) and 10 steps (34%
overall yield), respectively. The [2(5H)-furanylidene]ethanoate
(furanylidene) motif was installed in a facile biomimetic
transacetalization/dehydration cascade, allowing the develop-
ment of an exceptionally short and high yielding synthetic route
to the natural products. The structures as well as relative and
absolute configurations of gracilioethers B and C are confirmed
as (6R,8R)-1 and (6R,8R,11S)-2, respectively.
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